GCE

Mathematics

Advanced GCE

Unit 4726: Further Pure Mathematics 2

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$\begin{aligned} & t=\tan \frac{1}{2} x \Rightarrow \mathrm{~d} t=\frac{1}{2} \sec ^{2} \frac{1}{2} x \mathrm{~d} x=\frac{1}{2}\left(1+t^{2}\right) \mathrm{d} x \\ & \int \frac{1}{1+\sin x+\cos x} \mathrm{~d} x=\int \frac{1}{1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} \mathrm{~d} t \\ & =\int \frac{1}{1+t} \mathrm{~d} t=\ln \|1+t\|(+c) \\ & =\ln k\left\|1+\tan \frac{1}{2} x\right\|(+c) \end{aligned}$	B1 M1 A1 M1 A1 5	For correct result AEF (may be implied) For substituting throughout for x For correct unsimplified t integral For integrating (even incorrectly) to $a \ln \|\mathrm{f}(t)\|$. Allow $\|\mid$ or () For correct x expression k may be numerical, c is not required
$2 \text { (i) }$	$\begin{aligned} & \mathrm{f}(x)=\tanh ^{-1} x, \mathrm{f}^{\prime}(x)=\frac{1}{1-x^{2}}, \mathrm{f}^{\prime \prime}(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}} \\ & \mathrm{f}^{\prime \prime \prime}(x)= \\ & \frac{2\left(1-x^{2}\right)^{2}-2 x \cdot 2\left(1-x^{2}\right) \cdot-2 x}{\left(1-x^{2}\right)^{4}} \text { OR } \frac{2 x \cdot 4 x}{\left(1-x^{2}\right)^{3}}+\frac{2}{\left(1-x^{2}\right)^{2}} \\ & =\frac{2\left(1-x^{2}\right)^{2}+8 x^{2}\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{4}} \text { OR } \frac{8 x^{2}}{\left(1-x^{2}\right)^{3}}+\frac{2\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{3}} \\ & =\frac{2\left(1+3 x^{2}\right)}{\left(1-x^{2}\right)^{3}} \end{aligned}$	A1 M1 A1 A1 5	For quoting $\mathrm{f}^{\prime}(x)=\frac{1}{1 \pm x^{2}}$ and attempting to differentiate $\mathrm{f}^{\prime}(x)$ For $\mathrm{f}^{\prime \prime}(x)$ correct $\mathbf{W W W}$ For using quotient $O R$ product rule on $\mathrm{f}^{\prime \prime}(x)$ For correct unsimplified $\mathrm{f}^{\prime \prime \prime}(x)$ For simplified $\mathrm{f}^{\prime \prime \prime}(x)$ WWW AG
(ii)	$\mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1, \mathrm{f}^{\prime \prime}(0)=0$ $\mathrm{f}^{\prime \prime \prime}(0)=2 \Rightarrow \tanh ^{-1} x=x+\frac{1}{3} x^{3}$	B1 $\sqrt{ }$ M1 A1 3	For all values correct (may be implied) f.t. from (i) For evaluating $\mathrm{f}^{\prime \prime \prime}(0)$ and using Maclaurin expansion For correct series
3 (i)(a)	Asymptote $y=0$	B1 1	For correct equation (allow x-axis)
(b)	METHOD 1 $\begin{aligned} & y=\frac{5 a x}{x^{2}+a^{2}} \Rightarrow y x^{2}-5 a x+a^{2} y=0 \\ & b^{2} \geqslant 4 a c \Rightarrow 25 a^{2} \geqslant 4 a^{2} y^{2} \Rightarrow-\frac{5}{2} \leqslant y \leqslant \frac{5}{2} \end{aligned}$	M1 M1 A1 A1 4	For expressing as a quadratic in x For using $b^{2}-4 a c \lesseqgtr 0$ For $25 a^{2}-4 a^{2} y^{2}$ seen or implied For correct range
	METHOD 2 $\begin{aligned} & y=\frac{5 a x}{x^{2}+a^{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-5 a\left(x^{2}-a^{2}\right)}{\left(x^{2}+a^{2}\right)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow x= \pm a \Rightarrow y= \pm \frac{5}{2} \end{aligned}$ Asymptote, sketch etc $\Rightarrow-\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$	M1* A1 M1 A1 (*dep)	For differentiating y by quotient $O R$ product rule For correct values of x For finding y values and giving argument for range For correct range
(ii)(a)	$y=0$	B1 1	For correct equation (allow x-axis)
(b)	Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$	$\begin{aligned} & \text { B1 } \sqrt{ } \\ & \text { B1 } 2 \end{aligned}$	For correct maximum f.t. from (i)(b) For correct minimum f.t. from (i)(b) Allow decimals
(c)	$x \geqslant 0$	$\begin{gathered} \mathrm{B} 1 \quad 1 \\ 9 \end{gathered}$	For correct set of values (allow in words)

\begin{tabular}{|c|c|c|c|}
\hline \[
4 \text { (i) }
\] \& \[
\begin{aligned}
\& 8 \sinh ^{4} x \equiv \frac{8}{16}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{4} \\
\& \equiv \frac{8}{16}\left(\mathrm{e}^{4 x}-4 \mathrm{e}^{2 x}+6-4 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}\right) \\
\& \equiv \frac{1}{2}\left(\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}\right)-\frac{4}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)+\frac{6}{2} \\
\& \equiv \cosh 4 x-4 \cosh 2 x+3
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 4
\end{tabular} \& \begin{tabular}{l}
\(\sinh x=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\) seen or implied \\
For attempt to expand \((\ldots)^{4}\) \\
by binomial theorem \(O R\) otherwise \\
For grouping terms for \(\cosh 4 x\) or \(\cosh 2 x\) \\
OR using \(\mathrm{e}^{4 x}\) or \(\mathrm{e}^{2 x}\) expressions from RHS \\
For correct expression AG
\end{tabular} \\
\hline \& SR may be done wholly from RHS to LHS \& \[
\begin{aligned}
\& \text { M1 M1 } \\
\& \text { B1 A1 }
\end{aligned}
\] \& Evidence of factorising required for 2nd M1 \\
\hline \multirow[t]{8}{*}{(ii)} \& \begin{tabular}{l}
METHOD \(1 \cosh 4 x-3 \cosh 2 x+1=0\)
\[
\begin{aligned}
\& \Rightarrow\left(8 \sinh ^{4} x+4 \cosh 2 x-3\right)-3 \cosh 2 x+1=0 \\
\& \Rightarrow 8 \sinh ^{4} x+2 \sinh ^{2} x-1=0 \\
\& \Rightarrow\left(4 \sinh ^{2} x-1\right)\left(2 \sinh ^{2} x+1\right)=0 \Rightarrow \sinh x= \pm \frac{1}{2} \\
\& \Rightarrow x=\ln \left(\pm \frac{1}{2}+\frac{1}{2} \sqrt{5}\right)= \pm \ln \left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)
\end{aligned}
\] \\
SR Similar scheme for \(8 \cosh ^{4} x-1\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \(\sqrt{ } 5\) \\
\(4 \cosh ^{2} x+\)
\end{tabular} \& \begin{tabular}{l}
For using (i) and \(\cosh 2 x \equiv \pm 1 \pm 2 \sinh ^{2} x\) \\
For correct equation \\
For solving their quartic for \(\sinh x\) \\
For correct \(\sinh x\) (ignore other roots) \\
For correct answers (and no more) \\
f.t. from their value(s) for \(\sinh x\)
\[
5=0 \Rightarrow \cosh x=\frac{1}{2} \sqrt{5} \Rightarrow x= \pm \ln \left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)
\]
\end{tabular} \\
\hline \& \& M1
A1
M1
A1
A1 \(\sqrt{ } 1\) \& \begin{tabular}{l}
For using \(\cosh 4 x \equiv \pm 2 \cosh ^{2} 2 x \pm 1\) \\
For correct equation \\
For solving for \(\cosh 2 x\) \\
For correct cosh \(2 x\) (ignore others) \\
For correct answers (and no more) \\
f.t. from value(s) for \(\cosh 2 x\)
\end{tabular} \\
\hline \& METHOD 3 Put all \& M1 \& For changing to \(\mathrm{e}^{ \pm k x}\) \\
\hline \& \(\Rightarrow \mathrm{e}^{4 x}-3 \mathrm{e}^{2 x}+2-3 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}=0\) \& A1 \& \\
\hline \& \(\Rightarrow\left(\mathrm{e}^{4 x}+1\right)\left(\mathrm{e}^{4 x}-3 \mathrm{e}^{2 x}+1\right)=0\) \& M1 \& For solving for \(\mathrm{e}^{2 x}\) \\
\hline \& \& A1 \& For correct \(\mathrm{e}^{2 x}\) (ignore others) \\
\hline \& \[
\Rightarrow \mathrm{e}^{2 x}=\frac{1}{2}(3 \pm \sqrt{5}) \Rightarrow x=\frac{1}{2} \ln \left(\frac{3}{2} \pm \frac{1}{2} \sqrt{5}\right)
\] \& A1 \(\sqrt{ }\) \& For correct answers (and no more) f.t. from value(s) for \(\mathrm{e}^{2 x}\) \\
\hline \& \multicolumn{3}{|c|}{9} \\
\hline 5 (i) \& \(x_{n+1}=x_{n}-\frac{x_{n}{ }^{3}-5 x_{n}+3}{3 x_{n}^{2}-5}=\frac{2 x_{n}{ }^{3}-3}{3 x_{n}{ }^{2}-5}\) \& M1 A1 A1 3 \& \begin{tabular}{l}
For attempt at N -R formula \\
For correct N -R expression \\
For correct answer (necessary details \\
needed) AG \\
Allow omission of suffixes
\end{tabular} \\
\hline (ii) \& \[
\begin{aligned}
\& \mathrm{F}^{\prime}(x)= \\
\& \frac{6 x^{2}\left(3 x^{2}-5\right)-6 x\left(2 x^{3}-3\right)}{\left(3 x^{2}-5\right)^{2}}=\frac{6 x\left(x^{3}-5 x+3\right)}{\left(3 x^{2}-5\right)^{2}} \\
\& \mathrm{~F}^{\prime}(\alpha)=\frac{6 \alpha\left(\alpha^{3}-5 \alpha+3\right)}{\left(3 \alpha^{2}-5\right)^{2}}=0 \text { since } \alpha^{3}-5 \alpha+3=0
\end{aligned}
\] \& M1
M1

A1 \& | For using quotient $O R$ product rule to find $\mathrm{F}^{\prime}(x)$ |
| :--- |
| For factorising numerator to show $k\left(x^{3}-5 x+3\right)$ |
| For correct explanation of AG |

\hline (iii) \& | $\begin{aligned} & x_{1}=2 \Rightarrow 1.85714,1.83479,1.83424,1.83424 \\ & (\alpha=) 1.8342 \end{aligned}$ |
| :--- |
| SR For starting value leading to another root allow up to B1 B1 B0 | \& | B1 |
| :--- |
| B1 |
| B1 3 | \& | First iterate correct to at least 4 d.p. $O R \frac{13}{7}$ |
| :--- |
| For 2 equal iterates to at least 4 d.p. |
| For correct α to 4 d.p. |
| Allow answer rounding to 1.8342 |
| SR If not N-R, B0 B0 B0 |

\hline
\end{tabular}

6 (i)	$\begin{aligned} & y=x^{x} \Rightarrow \ln y=x \ln x \Rightarrow \frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\ln x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{x}(1+\ln x)=0 \Rightarrow \ln x=-1 \Rightarrow x=\mathrm{e}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For differentiating $\ln y O R x \ln x$ w.r.t. x For $(1+\ln x)$ seen or implied For correct x-value from fully correct working AG
(ii)	$\begin{aligned} & A>0.2 \times 0.5^{0.5}+0.2 \times 0.7^{0.7}+0.1 \times 0.9^{0.9} \\ & \Rightarrow A>0.3881(858)>0.388 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	For areas of 3 lower rectangles For lower bound rounding to AG
	$\begin{aligned} & A<0.2 \times 0.7^{0.7}+0.2 \times 0.9^{0.9}+0.1 \times 1^{1} \\ & \Rightarrow A<0.4377(177)<0.438 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	For areas of 3 upper rectangles For upper bound rounding to 0.438
		M1 A1 B1 3	Consider rectangle of height $f\left(e^{-1}\right)$ Use at least 1 lower rectangle, height $f\left(e^{-1}\right)$ Use at least 1 upper rectangle, height $\mathrm{f}(0)$ SR If more than one rectangle is used for either bound, they must be shown correctly
7 (i)	$\cos 3 \theta=\cos (-3 \theta)$ OR $\cos \theta=\cos (-\theta)$ for all θ \Rightarrow equation is unchanged, so symmetrical about $\theta=0$	M1 A1 2	For a correct procedure for symmetry related to the equation $O R$ to $\cos 3 \theta$ For correct explanation relating to equation AG
(ii)	$\begin{aligned} & r=0 \Rightarrow \cos 3 \theta=-1 \\ & \Rightarrow \theta= \pm \frac{1}{3} \pi, \pi \end{aligned}$	M1 A1 A1. 3	For obtaining equation for tangents A1 for any 2 values A1 for all, no extras (ignore outside range)
	$\begin{aligned} & \int_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} \frac{1}{2}(1+\cos 3 \theta)^{2}(\mathrm{~d} \theta) \\ & =\frac{1}{2} \int_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} 1+2 \cos 3 \theta+\cos ^{2} 3 \theta \mathrm{~d} \theta \\ & =\frac{1}{2} \int_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} 1+2 \cos 3 \theta+\frac{1}{2}(1+\cos 6 \theta) \mathrm{d} \theta \\ & =\frac{1}{2}\left[\theta+\frac{2}{3} \sin 3 \theta+\left(\frac{1}{2} \theta+\frac{1}{12} \sin 6 \theta\right)\right]_{-\frac{1}{3} \pi}^{\frac{1}{3} \pi} \\ & =\frac{1}{2} \pi \end{aligned}$	B1 M1* M1 M1 (*dep) A1 5 10	For correct integral with limits soi (limits may be $\left[0, \frac{1}{3} \pi\right]$ at any stage) For multiplying out, giving at least 2 terms For integration to $A \theta+B \sin 3 \theta+C \sin 6 \theta \text { AEF }$ For completing integration and substituting their limits into terms in ${ }_{\sin }^{\cos } n \theta$ For correct area www

8 (i)	METHOD 1 $\sinh \left(\cosh ^{-1} 2\right)=$ $\sinh \beta=\sqrt{\cosh ^{2} \beta-1}=\sqrt{2^{2}-1}=\sqrt{3}$		For appropriate use of $\sinh ^{2} \theta=\cosh ^{2} \theta-1$ For correct verification to AG
	$\begin{aligned} & \text { METHOD } 2 \\ & \sinh ^{-1} \sqrt{3}=\ln (\sqrt{3}+2), \cosh ^{-1} 2=\ln (2+\sqrt{3}) \\ & \Rightarrow \sinh \left(\cosh ^{-1} 2\right)=\sqrt{3} \end{aligned}$	M1 A1	For attempted use of \ln forms of $\sinh ^{-1} x$ and $\cosh ^{-1} x$ For both \ln expressions seen
	$\begin{aligned} & \text { METHOD 3 } \\ & \cosh ^{-1} 2=\ln (2+\sqrt{3}) \\ & \sinh \left(\cosh ^{-1} 2\right)=\frac{1}{2}\left(\mathrm{e}^{\ln (2+\sqrt{3})}-\mathrm{e}^{-\ln (2+\sqrt{3})}\right) \\ & =\frac{1}{2}(2+\sqrt{3}-(2-\sqrt{3}))=\sqrt{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For use of \ln form of $\cosh ^{-1} x$ and definition of $\sinh x$ For correct verification to AG SR Other similar methods may be used Note that $\ln (2+\sqrt{3})=-\ln (2-\sqrt{3})$
	$\begin{aligned} & I_{n}=\int_{0}^{\beta} \cosh ^{n} x \mathrm{~d} x \\ & =\left[\sinh x \cdot \cosh ^{n-1} x\right]_{0}^{\beta}-\int_{0}^{\beta} \sinh ^{2} x \cdot(n-1) \cosh ^{n-2} x \mathrm{~d} x \\ & =\sinh \beta \cdot \cosh ^{n-1} \beta-(n-1) \int_{0}^{\beta}\left(\cosh ^{2} x-1\right) \cosh ^{n-2} x \mathrm{~d} \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { X1 } \\ \text { (*dep) } \end{gathered}$	For attempt to integrate $\cosh x \cdot \cosh ^{n-1} x$ by parts For correct first stage of integration (ignore limits) For using $\sinh ^{2} x=\cosh ^{2} x-1$
	$\begin{aligned} & =2^{n-1} \sqrt{3}-(n-1)\left(I_{n}-I_{n-2}\right) \\ & \Rightarrow n I_{n}=2^{n-1} \sqrt{3}+(n-1) I_{n-2} \end{aligned}$	A1 B1 A1 6	For $(n-1)\left(I_{n}-I_{n-2}\right)$ correct For $2^{n-1} \sqrt{3}$ correct at any stage For correct result AG
	$\begin{aligned} & I_{1}=\int_{0}^{\beta} \cosh x d x=\sinh \beta=\sqrt{3} \\ & I_{3}=\frac{1}{3}\left(2^{2} \sqrt{3}+2 \sqrt{3}\right)=2 \sqrt{3} \end{aligned}$	B1 M1 A1	For correct value For using (ii) with $n=3$ OR $n=5$ For $I_{3}=\frac{1}{3}\left(2^{2} \sqrt{3}+2 I_{1}\right)$ $O R I_{5}=\frac{1}{5}\left(2^{4} \sqrt{3}+4 I_{3}\right)$
	$I_{5}=\frac{1}{5}\left(2^{4} \sqrt{3}+8 \sqrt{3}\right)=\frac{24}{5} \sqrt{3}$	$\begin{gathered} \text { A1 } 4 \\ 12 \end{gathered}$	For correct value

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

