

GCE

Mathematics

Advanced GCE

Unit 4726: Further Pure Mathematics 2

Mark Scheme for January 2011

physicsandmathstutor.com

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

4726 Mark Scheme January 2011

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	1	$t = \tan \frac{1}{2}x \Rightarrow dt = \frac{1}{2}\sec^2 \frac{1}{2}x dx = \frac{1}{2}(1+t^2) dx$	B1	For correct result AEF (may be implied)
		$\int \frac{1}{1 + \frac{1}{x^2}} dx = \int \frac{1}{1 + \frac{1}{x^2}} \frac{2}{x^2} dt$	M1	For substituting throughout for <i>x</i>
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	For correct unsimplified <i>t</i> integral
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$= \int \frac{1}{1+t} \mathrm{d}t = \ln\left 1+t\right (+c)$	M1	
2 (i) $f(x) = \tanh^{-1}x, f'(x) = \frac{1}{1-x^2}, f''(x) = \frac{2x}{(1-x^2)^2}$		$= \ln k \left 1 + \tan \frac{1}{2} x \right (+c)$	A1 5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	windy of numerical, o is not required
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 (i)	$f(x) = \tanh^{-1} x$, $f'(x) = \frac{1}{1 - x^2}$, $f''(x) = \frac{2x}{(1 - x^2)^2}$	M1	For quoting $f'(x) = \frac{1}{1 \pm x^2}$ and attempting to
$ \begin{array}{c} f'''(x) = \\ \frac{2(1-x^2)^2 - 2x \cdot 2(1-x^2) \cdot -2x}{(1-x^2)^4} OR \frac{2x \cdot 4x}{(1-x^2)^3} + \frac{2}{(1-x^2)^2} & \text{M1} \\ \frac{2(1-x^2)^2 + 8x^2(1-x^2)}{(1-x^2)^4} OR \frac{8x^2}{(1-x^2)^3} + \frac{2(1-x^2)}{(1-x^2)^3} \\ = \frac{2(1+3x^2)}{(1-x^2)^3} & \text{A1} & \text{For correct unsimplified } f'''(x) \\ \frac{2(1+3x^2)}{(1-x^2)^3} & \text{A1} & \text{For simplified } f'''(x) \text{ www AG} \\ \\ (ii) & f(0) = 0, f'(0) = 1, f''(0) = 0 & \text{B1} \sqrt{\frac{1}{N}} & \text{For all values correct (may be implied)} \\ f'''(0) = 2 \Rightarrow \tanh^{-1}x = x + \frac{1}{3}x^3 & \text{For correct series} \\ \hline (b) & \frac{1}{y} = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0 & \text{M1} & \text{For expressing as a quadratic in } x \\ \hline MI & \text{For expressing as a quadratic in } x \\ \hline MI & \text{For correct range} \\ \hline METHOD 1 & \text{For correct range} \\ \hline METHOD 2 & \text{M2} + \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2} & \text{M1} & \text{For correct range} \\ \hline METHOD 2 & \text{M2} + \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2} & \text{M1} & \text{For correct range} \\ \hline METHOD 2 & \text{M2} + \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2} & \text{M1} & \text{For correct values of } x \\ \hline M1 & \text{For correct range} \\ \hline M2 & \text{M2} + \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2} & \text{M3} + \frac{1}{x^2 + a^2} & \text{For correct values of } x \\ \hline M3 & \text{For correct range} \\ \hline M4 & \text{For correct range} \\ \hline M5 & \text{M3} + \frac{1}{x^2 + a^2} & \text{For correct range} \\ \hline M6 & \text{M4} + \frac{1}{x^2 + a^2} & \text{M4} & \text{For correct range} \\ \hline M6 & \text{M5} + \frac{1}{x^2 + a^2} & \text{M6} + \frac{1}{x^2 + a^2} & \text{M7} \\ \hline M1 & \text{For correct range} \\ \hline M2 & \text{For correct maximum } f.t. from (i)(b) \\ \hline M3 & \text{M3} + \frac{1}{x^2 + a^2} & \text{M4} & \text{For correct maximum } f.t. from (i)(b) \\ \hline M4 & \text{M4} + \text{For correct minimum } f.t. from (i)(b) \\ \hline M2 & \text{M4} + \text{For correct minimum } f.t. from (i)(b) \\ \hline M3 & \text{M4} + \text{For correct minimum } f.t. from (i)(b) \\ \hline M4 & \text{M4} + \text{For correct minimum } f.t. from (i)(b) \\ \hline M4 & \text{M4} + \text{M4} + \text{M4} \\ \hline M4 & \text{M5} + \text{M4} + \text{M4} \\ \hline M4 & \text{M5} + \text{M4} + \text{M4} \\ \hline M4 & \text{M5} + \text{M4} + \text$				• /
		f'''(x) =	A1	For $f''(x)$ correct WWW
		` '	M1	For using quotient <i>OR</i> product rule on $f''(x)$
$=\frac{2(1+3x^2)}{(1-x^2)^3} \qquad \qquad \text{A1 5 For simplified } f''(x) \text{ www AG}$ $(ii) f(0) = 0, \ f'(0) = 1, \ f''(0) = 0 \qquad \qquad \text{B1} \checkmark \qquad \text{For all values correct (may be implied)} \\ f.t. \ from \ (i) \qquad \qquad \qquad \text{For evaluating } f'''(0) \ \text{ and using Maclaurin} \\ expansion \qquad \qquad \qquad \qquad \text{For correct series}$ $\boxed{8}$ $3 \ (i)(a) \text{Asymptote } y = 0 \qquad \qquad \text{B1 1 For correct equation (allow x-axis)}$ $\boxed{b} \frac{\text{METHOD 1}}{y = \frac{5ax}{x^2 + a^2}} \Rightarrow yx^2 - 5ax + a^2y = 0 \qquad \qquad \text{M1 For using } b^2 - 4ac \leq 0$ $\boxed{b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}} \qquad \text{A1 For } 25a^2 - 4a^2y^2 \text{ seen or implied}$ $\boxed{\text{METHOD 2}} \qquad \qquad$		$\frac{1-x^2}{(1-x^2)^4} OK \frac{1-x^2}{(1-x^2)^3} + \frac{1}{(1-x^2)^4}$	$\overline{)^2}$ A1	For correct unsimplified $f'''(x)$
(ii) $f(0) = 0, f'(0) = 1, f''(0) = 0$ $f'''(0) = 2 \Rightarrow \tanh^{-1} x = x + \frac{1}{3}x^{3}$ (b) $\frac{1}{y} = \frac{5ax}{x^{2} + a^{2}} \Rightarrow yx^{2} - 5ax + a^{2}y = 0$ $\frac{b^{2}}{x^{2} + a^{2}} \Rightarrow \frac{1}{2} \Rightarrow$		$= \frac{2(1-x^2)^2 + 8x^2(1-x^2)}{(1-x^2)^4} OR \frac{8x^2}{(1-x^2)^3} + \frac{2(1-x^2)}{(1-x^2)^3}$		
(ii) $f''(0) = 0, f'(0) = 1, f'(0) = 0$ $f'''(0) = 2 \Rightarrow \tanh^{-1} x = x + \frac{1}{3}x^{3}$ $\frac{M1}{8} \text{For evaluating } f'''(0) \text{ and using Maclaurin expansion}$ A1 3 For correct series $\frac{3 \text{ (i)(a)}}{8} \text{Asymptote } y = 0$ B1 1 For correct equation (allow x-axis) $\frac{b}{y} = \frac{5ax}{x^{2} + a^{2}} \Rightarrow yx^{2} - 5ax + a^{2}y = 0$ $\frac{b^{2} \geqslant 4ac \Rightarrow 25a^{2} \geqslant 4a^{2}y^{2} \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}}{(x^{2} + a^{2})^{2}}$ METHOD 2 $y = \frac{5ax}{x^{2} + a^{2}} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^{2} - a^{2})}{(x^{2} + a^{2})^{2}}$ M1* For correct range $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct values of x For differentiating y by quotient OR product rule $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct values of x For finding y values and giving argument for range For correct range $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct range $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct range $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct values of x For finding y values and giving argument for range For correct range $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct equation (allow x-axis) $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A2 For correct equation (allow x-axis)		$=\frac{2(1+3x^2)}{(1-x^2)^3}$	A1 5	For simplified $f'''(x)$ www AG
$f'''(0) = 2 \Rightarrow \tanh^{-1} x = x + \frac{1}{3}x^3$ $\begin{array}{c} M1 & \text{For evaluating } f'''(0) \text{ and using Maclaurin expansion} \\ A1 & 3 & \text{For correct series} \\ \hline 8 \\ \hline \\ \textbf{8} \\ \hline \\ \textbf{3 (i)(a)} & \text{Asymptote } y = 0 \\ \hline \textbf{(b)} & \frac{\text{METHOD I}}{y = \frac{5ax}{x^2 + a^2}} \Rightarrow yx^2 - 5ax + a^2y = 0 \\ \hline & b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2} \\ \hline & A1 & \text{For expressing as a quadratic in } x \\ \hline & \textbf{M1} & \text{For using } b^2 - 4ac \leqslant 0 \\ \hline & b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2} \\ \hline & A1 & \text{For correct range} \\ \hline & \textbf{METHOD 2} \\ \hline & y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a\left(x^2 - a^2\right)}{\left(x^2 + a^2\right)^2} \\ \hline & A1 & \text{For differentiating } y \text{ by quotient } \textit{OR product rule} \\ \hline & \frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2} \\ \hline & A1 & \text{For correct values of } x \\ \hline & A2 & \text{For correct values of } x \\ \hline & A3 & \text{For correct values of } x \\ \hline & A4 & \text{For correct range} \\ \hline & \text{(ii)(a)} & y = 0 \\ \hline & B1 & 1 & \text{For correct equation (allow } x \text{-axis}) \\ \hline & \text{(ii)} & \text{(ii)} & y = 0 \\ \hline & B1 & 1 & \text{For correct equation (allow } x \text{-axis}) \\ \hline & \text{(ii)} & \text{(a)} & y = 0 \\ \hline & B1 & 1 & \text{For correct equation (allow } x \text{-axis}) \\ \hline & \text{(b)} & \text{Maximum } \sqrt{\frac{5}{2}}, \text{ minimum } -\sqrt{\frac{5}{2}} \\ \hline & B1 \sqrt{2} & \text{For correct maximum f.t. from (i)(b)} \\ \hline & \text{Allow decimals} \\ \hline & \text{(c)} & x \geqslant 0 \\ \hline & B1 & 1 & \text{For correct set of values (allow in words)} \\ \hline \end{array}$	(ii)	f(0) = 0, f'(0) = 1, f''(0) = 0	В1√	
3 (i)(a) Asymptote $y = 0$ B1 1 For correct series (b) METHOD 1 $y = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ M1 For expressing as a quadratic in x M1 For using $b^2 - 4ac \leq 0$ $b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ A1 For $25a^2 - 4a^2y^2$ seen or implied METHOD 2 $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$ M1* For differentiating y by quotient OR product rule $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct values of x For finding y values and giving argument for range Asymptote, sketch etc $\Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ A1 For correct values of x For correct equation (allow x -axis) B1 I For correct equation (allow x -axis) For correct maximum f.t. from (i)(b) Allow decimals (c) $x \geqslant 0$ B1 I For correct set of values (allow in words)		$f'''(0) = 2 \rightarrow \tanh^{-1} x = x + 1 x^3$	M1	
3 (i)(a)Asymptote $y = 0$ B11For correct equation (allow x-axis)(b)METHOD 1 $y = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ M1 M1For expressing as a quadratic in x For using $b^2 - 4ac \leq 0$ $b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ A1 A1For $25a^2 - 4a^2y^2$ seen or implied A1METHOD 2M1*For differentiating y by quotient OR product rule $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ M1*For correct values of x M1For finding y values and giving argument for range(ii)(a) $y = 0$ B1 A1 For correct maximum f.t. from (i)(b) Allow decimals(b)Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ B1 $\sqrt{\frac{5}{2}}$ For correct maximum f.t. from (i)(b) Allow decimals(c) $x \geqslant 0$ B11For correct set of values (allow in words)		$1 (0) - 2 \rightarrow \tanh x - x + \frac{1}{3}x$	A1 3	
(b) METHOD 1 $y = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ $y = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ M1 For expressing as a quadratic in x M1 For using $b^2 - 4ac \leq 0$ $\frac{b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}}{A1} = \frac{A1}{A1} = A1$			8	
(ii) $y = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ $y = \frac{5ax}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ $y = \frac{5ax}{x^2 + a^2} \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ $A1 \qquad \text{For correct range}$ $A1 \qquad \text{For differentiating } y \text{ by quotient } OR \text{ product rule}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ $A1 \qquad \text{For correct values of } x$ $A1 \qquad \text{For finding } y \text{ values and giving argument for range}$ $A1 \qquad \text{For correct equation (allow } x - axis)$ $A1 \qquad \text{For correct maximum } f.t. \text{ from (i)(b)}$ $A1 \qquad \text{For correct maximum } f.t. \text{ from (i)(b)}$ $A1 \qquad \text{For correct maximum } f.t. \text{ from (i)(b)}$ $A1 \qquad \text{For correct minimum } f.t. \text{ from (i)(b)}$ $A1 \qquad \text{For correct set of values (allow in words)}$	3 (i)(a)		B1 1	For correct equation (allow <i>x</i> -axis)
$y = \frac{1}{x^2 + a^2} \Rightarrow yx^2 - 5ax + a^2y = 0$ $b^2 \geqslant 4ac \Rightarrow 25a^2 \geqslant 4a^2y^2 \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ $METHOD 2$ $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ $A1 \text{For correct range}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ $\text{A1} \text{For differentiating } y \text{ by quotient } OR \text{ product rule}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ $\text{A1} \text{For correct values of } x$ $\text{M1} \text{For finding } y \text{ values and giving argument for range}$ $\text{A1} \text{For correct range}$ $\text{A1} \text{For correct range}$ $\text{A2} \text{For correct range}$ $\text{A3} \text{For correct range}$ $\text{A4} \text{For correct range}$ $\text{A5} \text{For correct range}$ $\text{A6} \text{For correct range}$ $\text{A1} \text{For correct range}$ $\text{A2} \text{For correct range}$ $\text{A3} \text{For correct range}$ $\text{A4} \text{For correct range}$ $\text{A5} \text{For correct range}$ $\text{A6} \text{For correct range}$ $\text{A1} \text{For correct range}$ $\text{A2} \text{For correct maximum f.t. from (i)(b)}$ $\text{A3} \text{A4} \text{A4} \text{For correct maximum f.t. from (i)(b)}$ $\text{A1} \text{A2} \text{A3} \text{A3} \text{A4} \text{A4} \text{A4} \text{A4} \text{A4} \text{A5}$ $\text{A5} \text{A6} \text{A7} \text{A7} \text{A7} \text{A7} \text{A8} \text{A8} \text{A9} \text$	(b)		M1	For expressing as a quadratic in x
METHOD 2 $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$ M1* For differentiating y by quotient OR product rule $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ A1 For correct values of x M1 For finding y values and giving argument for range A1 For correct range (*dep) (ii)(a) $y = 0$ B1 1 For correct equation (allow x-axis) (b) Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ B1 For correct maximum f.t. from (i)(b) B1 Por correct maximum f.t. from (i)(b) Allow decimals (c) $x \geqslant 0$ B1 1 For correct set of values (allow in words)		$y = \frac{1}{x^2 + a^2} \implies yx^2 - 5ax + a^2y = 0$	M1	For using $b^2 - 4ac \leq 0$
METHOD 2 $y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a(x^2 - a^2)}{(x^2 + a^2)^2}$ M1* For differentiating y by quotient OR product rule $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ Al For correct values of x M1 For finding y values and giving argument for range Asymptote, sketch etc $\Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ Al For correct range (*dep) (ii)(a) $y = 0$ Bl 1 For correct equation (allow x-axis) (b) Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ Bl $\sqrt{\frac{1}{2}}$ For correct maximum f.t. from (i)(b) Allow decimals (c) $x \geqslant 0$ Bl 1 For correct set of values (allow in words)		$b^2 > 4ac \rightarrow 25a^2 > 4a^2v^2 \rightarrow 5 < v < 5$	A1	For $25a^2 - 4a^2y^2$ seen or implied
$y = \frac{5ax}{x^2 + a^2} \Rightarrow \frac{dy}{dx} = \frac{-5a\left(x^2 - a^2\right)}{\left(x^2 + a^2\right)^2}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{5}{2}$ Al For correct values of x M1 For finding y values and giving argument for range Asymptote, sketch etc $\Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ Al For correct range $(*dep)$ (ii)(a) $y = 0$ Bl 1 For correct equation (allow x -axis) (b) Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ Bl $\sqrt{\frac{5}{2}}$ Bl $\sqrt{\frac{5}{2}}$ For correct maximum f.t. from (i)(b) Allow decimals (c) $x \geqslant 0$ Bl 1 For correct set of values (allow in words)			A1 4	For correct range
$\frac{-3y}{dx} = 0 \Rightarrow x = \pm a \Rightarrow y = \pm \frac{3}{2}$ $\text{Asymptote, sketch etc} \Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ $\text{M1} \qquad \text{For finding } y \text{ values and giving argument for range}$ For correct range $(*dep)$ $\text{(ii)(a)} y = 0$ $\text{B1} \textbf{1} \text{For correct equation (allow } x\text{-axis})$ $\text{(b)} \text{Maximum} \sqrt{\frac{5}{2}}, \text{ minimum} -\sqrt{\frac{5}{2}}$ $\text{B1} \sqrt{\textbf{2}} \text{For correct maximum f.t. from (i)(b)}$ $\text{B1} \sqrt{\textbf{2}} \text{For correct minimum f.t. from (i)(b)}$ Allow decimals $\text{(c)} x \geqslant 0$ $\text{B1} \textbf{1} \text{For correct set of values (allow in words)}$		(2 2)	M1*	• • • •
Asymptote, sketch etc $\Rightarrow -\frac{5}{2} \leqslant y \leqslant \frac{5}{2}$ (ii)(a) $y = 0$ B1 1 For correct equation (allow x-axis) (b) Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ B1 $\sqrt{2}$ For correct maximum f.t. from (i)(b) Allow decimals (c) $x \geqslant 0$ B1 1 For correct set of values (allow in words)		$\frac{dy}{dy} = 0 \Rightarrow x = +a \Rightarrow y = +\frac{5}{2}$		
Asymptote, sketch etc $\Rightarrow -\frac{3}{2} \leqslant y \leqslant \frac{3}{2}$ (ii)(a) $y = 0$ B1 1 For correct equation (allow x-axis) (b) Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ B1 $\sqrt{\frac{5}{2}}$ For correct maximum f.t. from (i)(b) B1 $\sqrt{\frac{5}{2}}$ For correct minimum f.t. from (i)(b) Allow decimals (c) $x \geqslant 0$ B1 1 For correct set of values (allow in words)		ux	MI	
(ii)(a) $y = 0$ B1 1 For correct equation (allow x-axis) (b) Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$ B1 $\sqrt{\frac{5}{2}}$ For correct maximum f.t. from (i)(b) B1 $\sqrt{\frac{5}{2}}$ For correct minimum f.t. from (i)(b) Allow decimals (c) $x \ge 0$ B1 1 For correct set of values (allow in words)		Asymptote, sketch etc $\Rightarrow -\frac{1}{2} \leqslant y \leqslant \frac{1}{2}$		
Maximum $\sqrt{\frac{2}{2}}$, minimum $-\sqrt{\frac{2}{2}}$ B1 $\sqrt{2}$ For correct minimum f.t. from (i)(b) Allow decimals (c) $x \ge 0$ B1 1 For correct set of values (allow in words)	(ii)(a)	y = 0		For correct equation (allow <i>x</i> -axis)
(c) $x \ge 0$ B1 1 For correct set of values (allow in words)	(b)	Maximum $\sqrt{\frac{5}{2}}$, minimum $-\sqrt{\frac{5}{2}}$		For correct minimum f.t. from (i)(b)
9	(c)	$x \geqslant 0$	B1 1	
			9	

1

4726 Mark Scheme January 2011

4 (i)	$8\sinh^4 x = \frac{8}{16} \left(e^x - e^{-x} \right)^4$	B1	$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right) \text{ seen or implied}$
	$\equiv \frac{8}{16} \left(e^{4x} - 4e^{2x} + 6 - 4e^{-2x} + e^{-4x} \right)$	M1	For attempt to expand $\left(\ldots\right)^4$
	$\equiv \frac{1}{2} \left(e^{4x} + e^{-4x} \right) - \frac{4}{2} \left(e^{2x} + e^{-2x} \right) + \frac{6}{2}$	M1	by binomial theorem OR otherwise For grouping terms for $\cosh 4x$ or $\cosh 2x$
	$\equiv \cosh 4x - 4\cosh 2x + 3$	A1 4	OR using e^{4x} or e^{2x} expressions from RHS For correct expression AG
-	SR may be done wholly from RHS to LHS	M1 M1	Evidence of factorising required for 2nd M1
		B1 A1	C 1
(ii)	METHOD 1 $\cosh 4x - 3\cosh 2x + 1 = 0$	3.54	
	$\Rightarrow (8\sinh^4 x + 4\cosh 2x - 3) - 3\cosh 2x + 1 = 0$	M1	For using (i) and $\cosh 2x = \pm 1 \pm 2 \sinh^2 x$
	$\Rightarrow 8\sinh^4 x + 2\sinh^2 x - 1 = 0$	A1 M1	For correct equation
	$\Rightarrow (4\sinh^2 x - 1)(2\sinh^2 x + 1) = 0 \Rightarrow \sinh x = \pm \frac{1}{2}$	A1	For solving their quartic for sinh <i>x</i> For correct sinh <i>x</i> (ignore other roots)
	$\Rightarrow x = \ln\left(\pm\frac{1}{2} + \frac{1}{2}\sqrt{5}\right) = \pm\ln\left(\frac{1}{2} + \frac{1}{2}\sqrt{5}\right)$	$A1\sqrt{5}$	For correct answers (and no more) f.t. from their value(s) for sinh x
	SR Similar scheme for $8\cosh^4 x - 1$	$4\cosh^2 x$	$+5 = 0 \Rightarrow \cosh x = \frac{1}{2}\sqrt{5} \Rightarrow x = \pm \ln\left(\frac{1}{2} + \frac{1}{2}\sqrt{5}\right)$
	METHOD 2 $\cosh 4x - 3\cosh 2x + 1 = 0$		
	$\Rightarrow (2\cosh^2 2x - 1) - 3\cosh 2x + 1 = 0$	M1	For using $\cosh 4x = \pm 2 \cosh^2 2x \pm 1$
	$\Rightarrow 2\cosh^2 2x - 3\cosh 2x = 0$	A1	For correct equation
	$\Rightarrow \cosh 2x = \frac{3}{2} \Rightarrow x = \frac{1}{2} \ln \left(\frac{3}{2} \pm \frac{1}{2} \sqrt{5} \right)$	M1	For solving for $\cosh 2x$
	$= \pm \frac{1}{2} \ln \left(\frac{3}{2} + \frac{1}{2} \sqrt{5} \right)$	A1 A1√	For correct $\cosh 2x$ (ignore others)
	$-\pm\frac{1}{2}\operatorname{Im}\left(\frac{1}{2}+\frac{1}{2}\operatorname{V}_{3}\right)$	111 (For correct answers (and no more) f.t. from value(s) for cosh 2x
	METHOD 3 Put all into exponentials	M1	For changing to $e^{\pm kx}$
	$\Rightarrow e^{4x} - 3e^{2x} + 2 - 3e^{-2x} + e^{-4x} = 0$	A1	For correct equation
	\Rightarrow $(e^{4x} + 1)(e^{4x} - 3e^{2x} + 1) = 0$	M1	For solving for e^{2x}
	()()	A1	For correct e^{2x} (ignore others)
	\Rightarrow $e^{2x} = \frac{1}{2}(3 \pm \sqrt{5}) \Rightarrow x = \frac{1}{2}\ln\left(\frac{3}{2} \pm \frac{1}{2}\sqrt{5}\right)$	A1	For correct answers (and no more)
			f.t. from value(s) for e^{2x}
		9	
	$x_n^3 - 5x_n + 3 \qquad 2x_n^3 - 3$	M1	For attempt at N-R formula
5 (i)	$x_{n+1} = x_n - \frac{x_n^3 - 5x_n + 3}{3x_n^2 - 5} = \frac{2x_n^3 - 3}{3x_n^2 - 5}$	A1 A1 3	For correct N-R expression For correct answer (necessary details
	n n	711 3	needed) AG
	——————————————————————————————————————	3.61	Allow omission of suffixes
(ii)	$F'(x) = \frac{1}{2}(x^2 + x^2) + \frac{1}{2}(x^2 + x^2)$	M1	For using quotient OR product rule to find $F'(x)$
	$\frac{6x^{2}(3x^{2}-5)-6x(2x^{3}-3)}{6x^{2}(2x^{3}-3)} = \frac{6x(x^{3}-5x+3)}{6x^{2}(2x^{3}-5)}$	M1	For factorising numerator to show
	$\frac{6x^2(3x^2-5)-6x(2x^3-3)}{(3x^2-5)^2} = \frac{6x(x^3-5x+3)}{(3x^2-5)^2}$		$k\left(x^3-5x+3\right)$
			\
	$F'(\alpha) = \frac{6\alpha(\alpha^3 - 5\alpha + 3)}{(3\alpha^2 - 5)^2} = 0 \text{ since } \alpha^3 - 5\alpha + 3 = 0$	A1 3	For correct explanation of AG
(iii)	$x_1 = 2 \Rightarrow 1.85714, 1.83479, 1.83424, 1.83424$	B1	First iterate correct to at least 4 d.p. $OR \frac{13}{7}$
	$(\alpha =) 1.8342$	B1	For 2 equal iterates to at least 4 d.p.
	CD For starting value leading to an other	B1 3	For correct α to 4 d.p.
	SR For starting value leading to another root allow up to B1 B1 B0		Allow answer rounding to 1.8342 SR If not N-R, B0 B0 B0
	•	9	SK II liot IV-K, DO DO DO
		<u>-</u>	

4726 **Mark Scheme** January 2011

A1

6 (1)	$y = x^x \Rightarrow \ln y = x \ln x \Rightarrow \frac{1}{y} \frac{dy}{dx} = 1 + \ln x$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^x (1 + \ln x) = 0 \implies \ln x = -1 \implies x = \mathrm{e}^{-1}$

M1For differentiating $\ln y OR x \ln x$ w.r.t. x

For $(1 + \ln x)$ seen or implied For correct x-value from fully correct **A**1 working AG

 $A > 0.2 \times 0.5^{0.5} + 0.2 \times 0.7^{0.7} + 0.1 \times 0.9^{0.9}$ (ii)

For areas of 3 lower rectangles M1

 $\Rightarrow A > 0.3881(858) > 0.388$

For lower bound rounding to AG **A**1

(iii) $A < 0.2 \times 0.7^{0.7} + 0.2 \times 0.9^{0.9} + 0.1 \times 1^{1}$ M1 For areas of 3 upper rectangles

 $\Rightarrow A < 0.4377(177) < 0.438$

A1 For upper bound rounding to 0.438

(iv)

M1Consider rectangle of height $f(e^{-1})$

Α1 Use at least 1 lower rectangle, height $f(e^{-1})$

B1 3 Use at least 1 upper rectangle, height f(0)

> **SR** If more than one rectangle is used for either bound, they must be shown correctly

10

7 (i) $\cos 3\theta = \cos(-3\theta)$ OR $\cos \theta = \cos(-\theta)$ for all θ

M1 For a correct procedure for symmetry related to the equation OR to $\cos 3\theta$

⇒ equation is unchanged, so symmetrical about

For correct explanation relating to equation **A**1

 $r = 0 \Rightarrow \cos 3\theta = -1$

M1 For obtaining equation for tangents A1 for any 2 values A1

(ii) $\Rightarrow \theta = \pm \frac{1}{3}\pi, \pi$

A1 A1 for all, no extras (ignore outside range)

(iii)

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} \frac{1}{2} (1 + \cos 3\theta)^2 (d\theta)$$

$$= \frac{1}{2} \int_{-\frac{1}{3}\pi}^{\frac{1}{3}\pi} 1 + 2\cos 3\theta + \cos^2 3\theta d\theta$$

В1 For correct integral with limits soi (limits may be $\left| 0, \frac{1}{3}\pi \right|$ at any stage)

 $= \frac{1}{2} \int_{-\frac{1}{2}\pi}^{\frac{1}{3}\pi} 1 + 2\cos 3\theta + \frac{1}{2} (1 + \cos 6\theta) d\theta$

M1* For multiplying out, giving at least 2 terms

For integration to M1

$$= \frac{1}{2} \left[\theta + \frac{2}{3} \sin 3\theta + \left(\frac{1}{2} \theta + \frac{1}{12} \sin 6\theta \right) \right]_{1}^{\frac{1}{3} \pi}$$

 $A\theta + B\sin 3\theta + C\sin 6\theta$ **AEF** For completing integration and substituting M1

 $= \frac{1}{2} \left[\theta + \frac{2}{3} \sin 3\theta + \left(\frac{1}{2} \theta + \frac{1}{12} \sin 6\theta \right) \right]_{-\frac{1}{2}\pi}^{\frac{1}{3}\pi}$

their limits into terms in $\frac{\cos n\theta}{\sin n\theta}$ (*dep)

 $=\frac{1}{2}\pi$

A1 5 For correct area www

10

4726 Mark Scheme January 2011

				1
8	(i)	METHOD 1	M 1	
	` '	$\sinh\left(\cosh^{-1}2\right) =$	M1	For appropriate use of $\sinh^2 \theta = \cosh^2 \theta - 1$
		$\sinh \beta = \sqrt{\cosh^2 \beta - 1} = \sqrt{2^2 - 1} = \sqrt{3}$	A1 2	For correct verification to AG
		METHOD 2	M1	For attempted use of \ln forms of $\sinh^{-1} x$
		$\sinh^{-1}\sqrt{3} = \ln(\sqrt{3} + 2), \cosh^{-1}2 = \ln(2 + \sqrt{3})$		and $\cosh^{-1} x$
		$\Rightarrow \sinh(\cosh^{-1} 2) = \sqrt{3}$	A1	For both ln expressions seen
		METHOD 3		
		$\cosh^{-1} 2 = \ln\left(2 + \sqrt{3}\right)$	M1	For use of ln form of $\cosh^{-1} x$ and
		$\sinh\left(\cosh^{-1}2\right) = \frac{1}{2} \left(e^{\ln\left(2+\sqrt{3}\right)} - e^{-\ln\left(2+\sqrt{3}\right)}\right)$	A1	definition of $\sinh x$ For correct verification to AG
		$\sin(\cos(x)) = 2 \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left($		SR Other similar methods may be used
		$= \frac{1}{2} \left(2 + \sqrt{3} - \left(2 - \sqrt{3} \right) \right) = \sqrt{3}$		Note that $\ln(2+\sqrt{3}) = -\ln(2-\sqrt{3})$
	(ii)	$I_n = \int_0^\beta \cosh^n x \mathrm{d}x$	M1*	For attempt to integrate $\cosh x \cdot \cosh^{n-1} x$
		$= \left[\sinh x \cdot \cosh^{n-1} x\right]_0^{\beta} - \int_0^{\beta} \sinh^2 x \cdot (n-1) \cosh^{n-2} x dx$		by parts For correct first stage of integration (ignore limits)
		$= \sinh \beta \cdot \cosh^{n-1} \beta - (n-1) \int_0^\beta \left(\cosh^2 x - 1 \right) \cosh^{n-2} x$	$a dx \frac{M1}{(*dep)}$	For using $\sinh^2 x = \cosh^2 x - 1$
		$=2^{n-1}\sqrt{3}-(n-1)(I_n-I_{n-2})$	A1	For $(n-1)(I_n - I_{n-2})$ correct
		$= 2 \sqrt{3 - (n-1)(I_n - I_{n-2})}$	B1	For $2^{n-1}\sqrt{3}$ correct at any stage
		$\Rightarrow n I_n = 2^{n-1} \sqrt{3} + (n-1)I_{n-2}$	A1 6	For correct result AG
	(iii)	$I_1 = \int_0^\beta \cosh x dx = \sinh \beta = \sqrt{3}$	B1	For correct value
		$I_3 = \frac{1}{3} \left(2^2 \sqrt{3} + 2\sqrt{3} \right) = 2\sqrt{3}$	M1	For using (ii) with $n = 3 OR n = 5$
		13 - 3(2 + 3 + 2 + 3) - 2 + 3	A1	For $I_3 = \frac{1}{3} \left(2^2 \sqrt{3} + 2I_1 \right)$
				$OR \ I_5 = \frac{1}{5} \left(2^4 \sqrt{3} + 4I_3 \right)$
		$I_5 = \frac{1}{5} \left(2^4 \sqrt{3} + 8\sqrt{3} \right) = \frac{24}{5} \sqrt{3}$	A1 4	For correct value
			12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

